login
A057823
Decimal expansion of q = 0.193072033..., which is the value of q which gives the maximum of the Dedekind eta function eta(q) := q^(1/12) * Product_{n>=1} (1 - q^(2n)) for q between 0 and 1.
2
1, 9, 3, 0, 7, 2, 0, 3, 3, 9, 5, 7, 4, 1, 0, 9, 7, 8, 9, 2, 2, 9, 4, 1, 6, 8, 5, 4, 2, 1, 2, 6, 2, 2, 5, 4, 5, 7, 0, 5, 0, 7, 7, 6, 0, 9, 7, 8, 7, 0, 4, 7, 2, 1, 6, 0, 9, 8, 0, 8, 9, 8, 9, 0, 7, 7, 7, 4, 6, 8, 4, 0, 5, 6, 7, 8, 7, 4, 9, 2, 5, 7, 0, 2, 8, 9, 6, 3, 9, 2, 7, 9, 3, 3, 6, 0, 8, 8, 0, 2
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Dedekind Eta Function.
FORMULA
Equals sqrt(A211342). - Vaclav Kotesovec, Jul 02 2017
EXAMPLE
0.19307203395741097892294168542126225457050776097870...
MATHEMATICA
RealDigits[FindRoot[D[q^(1/12)*Product[(1-q^(2 n)), {n, 100}], q] == 0, {q, 0.2}, WorkingPrecision -> 200][[1, 2]]][[1]]
q /. Last @ FindMaximum[ DedekindEta[ -I*Log[q]/Pi], {q, 1/5}, WorkingPrecision -> 200] // RealDigits[#][[1]][[1 ;; 100]]& (* Jean-François Alcover, Feb 05 2013 *)
q0 = q /. FindMaximum[q^(1/12)*QPochhammer[q^2], {q, 1/5}, WorkingPrecision -> 200][[2]]; RealDigits[q0, 10, 100][[1]] (* Jean-François Alcover, Nov 25 2015 *)
CROSSREFS
Cf. A211342.
Sequence in context: A021522 A154901 A346173 * A011461 A302716 A198546
KEYWORD
cons,nonn,easy,nice
AUTHOR
Peter L. Walker (peterw(AT)aus.ac.ae), Nov 24 2000
EXTENSIONS
More terms from Vladeta Jovovic, Jun 19 2004
STATUS
approved