login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057368
Number of Gaussian primes (in the first half-quadrant; i.e., 0 to 45 degrees) with real part = n.
2
1, 1, 2, 1, 2, 2, 2, 3, 1, 4, 3, 1, 4, 3, 3, 3, 4, 3, 5, 6, 2, 4, 6, 3, 7, 6, 4, 4, 4, 4, 8, 6, 5, 6, 8, 5, 6, 7, 3, 9, 5, 5, 9, 8, 7, 9, 7, 7, 10, 8, 6, 9, 10, 5, 8, 8, 6, 10, 12, 8, 11, 10, 6, 9, 15, 5, 11, 11, 4, 11, 14, 6, 12, 10, 12, 11, 9, 8, 12, 19, 10, 15, 10, 8, 19, 11, 8, 11, 14, 15, 13
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 0. - Franklin T. Adams-Watters, May 05 2006
The graph of this sequence inspires the following conjecture: A > a(n)/pi(n) > B, where A and B are constants and pi(n) is the prime counting function (A000720). - T. D. Noe, Feb 26 2007
Stronger conjecture: Let pi(n) be the prime counting function (A000720). Then pi(n) >= a(n) >= pi(n)/5 for n>1, with the following equalities: pi(2)=a(2), pi(3)=a(3), pi(10)=a(10) and a(12)=pi(12)/5. - T. D. Noe, Feb 26 2007
REFERENCES
Mark A. Herkommer, "Number Theory, A Programmer's Guide," McGraw-Hill, New York, 1999, page 269.
FORMULA
a(n) = A069004(n) + 1 if n is 1 or a prime = 3 (mod 4), A069004(n) otherwise. - Franklin T. Adams-Watters, May 05 2006
a(n) = O(n/log(n)). - Thomas Ordowski, Mar 06 2017
MATHEMATICA
Do[ c=0; Do[ If[ PrimeQ[ j + k*I, GaussianIntegers -> True ], c++ ], {j, n, n}, {k, 0, j} ]; Print[ c ], {n, 1, 75} ]
CROSSREFS
Cf. A055683 and A057352.
Cf. A069004.
Sequence in context: A239281 A024936 A144590 * A192394 A085033 A230254
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 22 2000
EXTENSIONS
More terms from Franklin T. Adams-Watters, May 05 2006
STATUS
approved