OFFSET
1,1
COMMENTS
It is an open question whether any two distinct Pythagorean Triples can have the same product of their sides.
From Amiram Eldar, Nov 22 2020: (Start)
Named after the French writer Antoine de Saint-Exupéry (1900-1944).
The problem of finding two distinct Pythagorean triples with the same product was proposed by Eckert (1984). It is equivalent of finding a nontrivial solution of the Diophantine equation x*y*(x^4-y^4) = z*w*(z^4-w^4) (Bremner and Guy, 1988). (End)
REFERENCES
Richard K. Guy, "Triangles with Integer Sides, Medians and Area." D21 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 188-190, 1994.
Antoine de Saint-Exupéry, Problème du Pharaon, Liège : Editions Dynamo, 1957.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Andrew Bremner and Richard K. Guy, A Dozen Difficult Diophantine Dilemmas, The American Mathematical Monthly, Vol. 95, No. 1 (1988), pp. 31-36.
Ernest J. Eckert, Problem 994, Crux Mathematicorum, Vol. 10, No. 10 (1984), p. 318, entire issue.
Richard K. Guy, Comment to Problem 994, Crux Mathematicorum, Vol. 12, No. 5 (1986), p. 109, entire issue.
Henry Plane, Calcule-moi un parallélépipède..., AMPEP, PLOT No. 22 (2002), pp. 22-23.
Giovanni Resta, Saint-Exupery numbers.
Antoine de Saint Exupéry, Le Problème du Pharaon, Succession Saint Exupéry - d'Agay, 2018.
Eric Weisstein's World of Mathematics, Pythagorean Triple.
EXAMPLE
a(1) = 3*4*5 = 60.
MATHEMATICA
k=5000000; lst={}; Do[Do[If[IntegerQ[a=Sqrt[c^2-b^2]], If[a>=b, Break[]]; x=a*b*c; If[x<=k, AppendTo[lst, x]]], {b, c-1, 4, -1}], {c, 5, 400, 1}]; Union@lst (* Vladimir Joseph Stephan Orlovsky, Sep 05 2009 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Aug 01 2000
STATUS
approved