login
A056795
Number of divisors of k as k runs through sequence of distinct values of LCM(1,..,n).
2
1, 2, 4, 6, 12, 24, 32, 48, 96, 192, 240, 480, 960, 1920, 2880, 3840, 7680, 15360, 18432, 36864, 73728, 147456, 294912, 442368, 884736, 1769472, 3538944, 4128768, 8257536, 16515072, 33030144, 66060288, 82575360, 165150720, 330301440
OFFSET
1,2
COMMENTS
Values of LCM's in A003418 and accordingly their number of divisors jump at powers of primes (A000961). Here divisor-numbers of LCM's are displayed without repetition.
LINKS
FORMULA
a(n) = A000005(A051451(n)).
EXAMPLE
For x = 19,20,21,22 the value of A003418(x) = A051451(13) = LCM(1,..,x) = 232792560, of which the total number of divisors is 960, so a(13) = 960.
PROG
(PARI) f(n) = lcm(vector(n, i, i)); \\ A003418
lista(nn) = {my(last = 0); for (n=1, nn, my(new = f(n)); if (new != last, print1(numdiv(new), ", "); last = new); ); } \\ Michel Marcus, Oct 08 2020
CROSSREFS
Partial sums of A305215.
Sequence in context: A346016 A368252 A095416 * A141420 A141551 A181804
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 28 2000
STATUS
approved