login
A056455
Palindromes using exactly four different symbols.
8
0, 0, 0, 0, 0, 0, 24, 24, 240, 240, 1560, 1560, 8400, 8400, 40824, 40824, 186480, 186480, 818520, 818520, 3498000, 3498000, 14676024, 14676024, 60780720, 60780720, 249401880, 249401880, 1016542800, 1016542800, 4123173624, 4123173624, 16664094960, 16664094960
OFFSET
1,7
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
a(n) = 4! * Stirling2( [(n+1)/2], 4).
G.f.: 24*x^7/((1-x)*(1-2*x)*(1+2*x)*(1-2*x^2)*(1-3*x^2)). - Colin Barker, May 05 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=4 is the number of symbols. - Robert A. Russell, Sep 25 2018
MATHEMATICA
k=4; Table[k! StirlingS2[Ceiling[n/2], k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)
PROG
(PARI) a(n) = 4!*stirling((n+1)\2, 4, 2); \\ Altug Alkan, Sep 25 2018
CROSSREFS
Sequence in context: A004011 A334570 A056465 * A128378 A165845 A189049
KEYWORD
nonn,easy
STATUS
approved