OFFSET
1,7
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,9,-9,-26,26,24,-24).
FORMULA
a(n) = 4! * Stirling2( [(n+1)/2], 4).
G.f.: 24*x^7/((1-x)*(1-2*x)*(1+2*x)*(1-2*x^2)*(1-3*x^2)). - Colin Barker, May 05 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=4 is the number of symbols. - Robert A. Russell, Sep 25 2018
MATHEMATICA
k=4; Table[k! StirlingS2[Ceiling[n/2], k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)
PROG
(PARI) a(n) = 4!*stirling((n+1)\2, 4, 2); \\ Altug Alkan, Sep 25 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved