login
A056144
a(1) = 1, a(m+1) = Sum_{k=1..m} gcd(m, a(k)).
4
1, 1, 2, 3, 5, 9, 11, 7, 9, 27, 15, 21, 25, 13, 27, 49, 17, 33, 59, 19, 33, 69, 53, 45, 47, 61, 39, 117, 47, 29, 89, 31, 33, 161, 51, 75, 105, 37, 57, 159, 65, 41, 135, 43, 85, 251, 91, 139, 89, 127, 127, 171, 113, 157, 199, 131, 93, 227, 87, 117, 185, 121, 123, 227, 65
OFFSET
1,3
COMMENTS
From Ivan Neretin, Apr 06 2016: (Start)
a(n) >= n-1.
All terms except a(3) = 2 are odd.
For all n of the form 2^k+1 except 3, a(n) = n.
(End)
LINKS
EXAMPLE
a(7) = gcd(6,1) + gcd(6,1) + gcd(6,2) + gcd(6,3) + gcd(6,5) + gcd(6,9) = 1 + 1 + 2 + 3 + 1 + 3 = 11.
MATHEMATICA
Fold[Append[#1, Total@GCD[#1, #2]] &, {1}, Range@64] (* Ivan Neretin, Apr 06 2016 *)
CROSSREFS
Cf. A093820.
Sequence in context: A262990 A058108 A174512 * A284626 A284847 A186776
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Aug 04 2000
STATUS
approved