OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
A. J. Guttmann and I. G. Enting, Solvability of some statistical mechanical systems, Phys. Rev. Lett., 76 (1996), 344-347.
A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189.
D. Hansel et al., Analytical properties of the anisotropic cubic Ising model, J. Stat. Phys., 48 (1987), 69-80.
Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-4,0,4,2,-3,-1,1).
FORMULA
G.f.: (1 + 15*x + 71*x^2 + 192*x^3 + 326*x^4 + 388*x^5 + 326*x^6 + 192*x^7 + 71*x^8 + 15*x^9 + x^10)/((1-x^3)*(1-x)^4*(1+x)^3).
a(n) = (4794*n^4 + 19194*n^2 + 3349 - 81*(-1)^n*(2*n^2 + 5) + 512*ChebyshevT(n, -1/2]))/1728, for n >= 1, with a(0) = 1. - G. C. Greubel, Jan 16 2020
MAPLE
1, seq( simplify( (4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*ChebyshevT(n, -1/2))/1728 ), n=1..40); # G. C. Greubel, Jan 16 2020
MATHEMATICA
Join[{1}, Table[(4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*ChebyshevT[n, -1/2])/1728, {n, 40}]] (* G. C. Greubel, Jan 16 2020 *)
LinearRecurrence[{1, 3, -2, -4, 0, 4, 2, -3, -1, 1}, {1, 16, 90, 328, 888, 2016, 3994, 7212, 12070, 19112, 28846}, 40] (* Harvey P. Dale, Jul 24 2021 *)
PROG
(PARI) Vec((1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1-x^3)*(1-x)^4*(1+x)^3) + O(x^40)) \\ Colin Barker, Dec 10 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1-x^3)*(1-x^2)^3*(1-x)) )); // G. C. Greubel, Jan 16 2020
(Sage) [1]+[(4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*chebyshev_T(n, -1/2))/1728 for n in (1..40)] # G. C. Greubel, Jan 16 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 07 2000
STATUS
approved