login
A055819
Row sums of array T in A055818; twice the odd-indexed Fibonacci numbers after initial term.
15
1, 2, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346
OFFSET
0,2
COMMENTS
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy - 4. - Michel Lagneau, Feb 01 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 18xy + y^2 + 256 = 0. - Colin Barker, Feb 16 2014
LINKS
Youngwoo Kwon, Binomial transforms of the modified k-Fibonacci-like sequence, arXiv:1804.08119 [math.NT], 2018.
D. Yaqubi, M. Farrokhi D.G., H. Gahsemian Zoeram, Lattice paths inside a table. I, arXiv:1612.08697 [math.CO], 2016-2017.
FORMULA
From Colin Barker, Feb 01 2014: (Start)
a(n) = 3*a(n-1) - a(n-2) for n > 0.
G.f.: (1 -x -x^2)/(1-3*x+x^2). (End)
a(n) = 2*A001519(n) for n > 0. - Colin Barker, Feb 04 2014
From G. C. Greubel, Jan 22 2020: (Start)
a(n) = 2*(ChebyshevU(n, 3/2) - 2*ChebyshevU(n-1, 3/2)), with a(0)=1.
E.g.f.: -1 + 2*exp(3*x/2)*( cosh(sqrt(5)*x/2) - sinh(sqrt(5)*x/2)/sqrt(5) ). (End)
MAPLE
seq(`if`(n=0, 1, simplify(2*(ChebyshevU(n, 3/2)-2*ChebyshevU(n-1, 3/2)))), n = 0..30); # G. C. Greubel, Jan 22 2020
MATHEMATICA
CoefficientList[Series[(1-x-x^2)/(1-3*x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *)
Join[{1}, LinearRecurrence[{3, -1}, {2, 4}, 30]] (* Harvey P. Dale, Oct 01 2014 *)
Table[If[n==0, 1, 2*(ChebyshevU[n, 3/2] -2*ChebyshevU[n-1, 3/2])], {n, 0, 30}] (* G. C. Greubel, Jan 22 2020 *)
PROG
(PARI) Vec((1-x-x^2)/(1-3*x+x^2) + O(x^40)) \\ Colin Barker, Feb 01 2014
(Magma) I:=[2, 4]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 22 2020
(Sage) [1]+[2*(chebyshev_U(n, 3/2) -2*chebyshev_U(n-1, 3/2)) for n in (1..30)] # G. C. Greubel, Jan 22 2020
(GAP) a:=[2, 4];; for n in [3..30] do a[n]:=3*a[n-1]-a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Jan 22 2020
CROSSREFS
Essentially the same as A052995.
Sequence in context: A149810 A095337 A162533 * A052995 A113337 A084575
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved