OFFSET
0,2
COMMENTS
If Y is a 2-subset of an n-set X then, for n>=9, a(n-9) is the number of 9-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n-9) = binomial(n,9) - 2*binomial(n-2,8), n=9, 10, ... . - Milan Janjic, Dec 28 2007
G.f.: (1-2*x+2*x^2)/(1-x)^10. - Colin Barker, Feb 21 2012
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4)+ 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Vincenzo Librandi, May 01 2012
MATHEMATICA
a=1; b=2; c=3; d=4; e=5; f=6; g=7; s=8; lst={1, s}; Do[a+=n; b+=a; c+=b; d+=c; e+=d; f+=e; g+=f; s+=g; AppendTo[lst, s], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
CoefficientList[Series[(1-2*x+2*x^2)/(1-x)^10, {x, 0, 30}], x] (* Vincenzo Librandi, May 01 2012 *)
PROG
(Magma) [Binomial(n, 9)-2*Binomial(n-2, 8):n in [9..40]]; // Vincenzo Librandi, May 01 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved