login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055260
Sums of two powers of 9.
5
2, 10, 18, 82, 90, 162, 730, 738, 810, 1458, 6562, 6570, 6642, 7290, 13122, 59050, 59058, 59130, 59778, 65610, 118098, 531442, 531450, 531522, 532170, 538002, 590490, 1062882, 4782970, 4782978, 4783050, 4783698, 4789530, 4842018, 5314410, 9565938, 43046722
OFFSET
0,1
FORMULA
a(n) = 9^(n-trinv(n))+9^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
Regarded as a triangle T(n, k) = 9^n + 9^k, so as a sequence a(n) = 9^A002262(n) + 9^A003056(n).
MATHEMATICA
t = 9^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
Total/@Tuples[9^Range[0, 10], 2]//Union (* Harvey P. Dale, Jul 03 2019 *)
PROG
(Python)
def valuation(n, b):
v = 0
while n > 1: n //= b; v += 1
return v
def aupto(lim):
pows = [9**i for i in range(valuation(lim-1, 9) + 1)]
sum_pows = sorted([a+b for i, a in enumerate(pows) for b in pows[i:]])
return [s for s in sum_pows if s <= lim]
print(aupto(43046722)) # Michael S. Branicky, Feb 10 2021
CROSSREFS
Sequence in context: A271786 A134251 A317714 * A254059 A346551 A180591
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved