login
A054982
a(n) = least composite number such that sigma(a(n)+n!) = sigma(a(n))+n! where sigma() = A000203.
3
434, 104, 80, 182, 427, 1727, 4147, 7163, 42031, 165841, 569257, 2683909, 10040081, 39094849, 155533969, 717519401, 3041377519, 16076525809, 71749935913
OFFSET
2,1
COMMENTS
a(21) <= 328823468719, a(22) <= 1542201899569, a(23) <= 9325753929619. - Donovan Johnson, Sep 22 2013
EXAMPLE
a(7) = 1727 = 11*157, 4 divisors, sigma(1727)+5040 = 1896+5040 = 6936, sigma(1727+5040) = sigma(6767) = 1+67+101+6767 = 6936.
a(2) = A054799(24) = 434, a(3) = A015914(19) = 104, the first composites in that series.
MATHEMATICA
L = {}; Do[i = 1; While[ ! ((Plus @@ Divisors[i + j! ] == j! + Plus @@ Divisors[i]) && ! PrimeQ[i]), i++ ]; L = Append[L, i], {j, 2, 13}]; L (from Vit Planocka)
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Labos Elemer, May 29 2000
EXTENSIONS
More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 22 2003
a(14)-a(19) from Donovan Johnson, Nov 30 2008
a(20) from Donovan Johnson, Sep 19 2013
STATUS
approved