login
A054660
Number of monic irreducible polynomials over GF(4) of degree n with fixed nonzero trace.
14
1, 2, 5, 16, 51, 170, 585, 2048, 7280, 26214, 95325, 349520, 1290555, 4793490, 17895679, 67108864, 252645135, 954437120, 3616814565, 13743895344, 52357696365, 199911205050, 764877654105, 2932031006720, 11258999068416
OFFSET
1,2
COMMENTS
Also number of Lyndon words of length n with trace 1 over GF(4).
Let x = RootOf( z^2+z+1 ) and y = 1+x. Also number of Lyndon words of length n with trace x over GF(4). Also number of Lyndon words of length n with trace y over GF(4).
Also number of 4-ary Lyndon words (i.e., Lyndon words over Z_4) of length n with trace 1 (mod 4). Also the same with trace 3 (mod 4). - Andrey Zabolotskiy, Dec 19 2020
FORMULA
From Seiichi Manyama, Mar 11 2018: (Start)
a(n) = A000048(2*n) = (1/(4*n)) * Sum_{odd d divides n} mu(d)*4^(n/d), where mu is the Möbius function A008683.
a(n+1) = A300628(n,n) for n >= 0. (End)
From Andrey Zabolotskiy, Dec 19 2020: (Start)
a(n) = A074033(n) + A074034(n) + 2 * A074035(n).
a(n) = A074448(n) + A074449(n) + 2 * A074450(n).
a(n) = A074406(n) + A074407(n) + A074408(n) + A074409(n). (End)
EXAMPLE
a(3; y)=5 since the five Lyndon words over GF(4) of trace y and length 3 are { 00y, 01x, 0x1, 11y, xxy }; the five Lyndon words over Z_4 of trace 1 (mod 4) and length 3 are { 001, 023, 032, 113, 122 }.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 18 2000
EXTENSIONS
More terms from James A. Sellers, Apr 19 2000
STATUS
approved