login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 12 1-simplexes.
1

%I #11 May 10 2013 12:44:27

%S 30,2310,42840,391545,2375100,10980585,41761720,136963255,399689290,

%T 1060984925,2603641040,5979294230,12973080120,26794003110,53000811600,

%U 100914240770,185718969590,331524753560,575738427880,975199600375,1614655942900,2618302433175

%N Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 12 1-simplexes.

%C Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=4,l=12.

%D V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

%H T. D. Noe, <a href="/A054647/b054647.txt">Table of n, a(n) for n = 6..1000</a>

%F a(n) = 30*C(n, 6)+2100*C(n, 7)+25200*C(n, 8)+86625*C(n, 9)+116550*C(n, 10)+69300*C(n, 11)+15400*C(n, 12) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n^6+3*n^5-86*n^4-240*n^3+2704*n^2+5232*n-34128)/31104.

%F Empirical G.f.: 5*x^6*(169*x^6-1119*x^5+2535*x^4-1245*x^3-3030*x^2-384*x-6)/(x-1)^13. [_Colin Barker_, Jun 22 2012]

%Y Cf. A054557-A054562.

%K nonn

%O 6,1

%A _Vladeta Jovovic_, Apr 16 2000

%E More terms from _James A. Sellers_, Apr 16 2000