login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054647
Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 12 1-simplexes.
1
30, 2310, 42840, 391545, 2375100, 10980585, 41761720, 136963255, 399689290, 1060984925, 2603641040, 5979294230, 12973080120, 26794003110, 53000811600, 100914240770, 185718969590, 331524753560, 575738427880, 975199600375, 1614655942900, 2618302433175
OFFSET
6,1
COMMENTS
Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=4,l=12.
REFERENCES
V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.
FORMULA
a(n) = 30*C(n, 6)+2100*C(n, 7)+25200*C(n, 8)+86625*C(n, 9)+116550*C(n, 10)+69300*C(n, 11)+15400*C(n, 12) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n^6+3*n^5-86*n^4-240*n^3+2704*n^2+5232*n-34128)/31104.
Empirical G.f.: 5*x^6*(169*x^6-1119*x^5+2535*x^4-1245*x^3-3030*x^2-384*x-6)/(x-1)^13. [Colin Barker, Jun 22 2012]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 16 2000
EXTENSIONS
More terms from James A. Sellers, Apr 16 2000
STATUS
approved