login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054598
a(0)=0; for n>0, a(n) = Sum_{d|n} d*2^(n/d).
6
0, 2, 8, 14, 32, 42, 104, 142, 320, 554, 1128, 2070, 4352, 8218, 16696, 32934, 66176, 131106, 263480, 524326, 1050912, 2097634, 4198488, 8388654, 16786688, 33554642, 67125352, 134219390, 268468960, 536870970, 1073811144, 2147483710, 4295099648, 8589940890
OFFSET
0,2
COMMENTS
Row sums of A322200, where A322200 describes Sum_{n>=1} -log(1 - (x^n + y^n)). - Paul D. Hanna, Dec 01 2018
FORMULA
L.g.f.: -log(Product_{ k>0 } (1-2*x^k)) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jun 23 2016
G.f.: Sum_{k>=1} 2^k*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 24 2018
MATHEMATICA
Table[CoefficientList[Series[-Log[-QPochhammer[2, x]], {x, 0, 60}], x][[n]] (n - 1), {n, 1, 60}] (* Benedict W. J. Irwin, Jun 23 2016 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*2^(n/d)); \\ Michel Marcus, Jul 01 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 16 2000
STATUS
approved