login
A054392
Number of permutations with certain forbidden subsequences.
4
1, 1, 2, 5, 14, 42, 131, 418, 1352, 4410, 14463, 47605, 157084, 519255, 1718653, 5693903, 18877509, 62620857, 207816230, 689899944, 2290913666, 7608939443, 25276349558, 83977959853, 279039638062, 927272169336, 3081641953082
OFFSET
0,3
COMMENTS
Apparently the Motzkin transform of A005251, after A005251(0) is set to 1. - R. J. Mathar, Dec 11 2008
LINKS
E. Barcucci et al., From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
FORMULA
(n-2)*a(n) = (8*n-19)*a(n-1) - (20*n-49)*a(n-2) + (11*n-1)*a(n-3) + (19*n-116) * a(n-4) - 21*(n-5)*a(n-5). - R. J. Mathar, Aug 09 2015
G.f.: (2 -10*x +13*x^2 -5*x^3 +x^2*sqrt(1-2*x-3*x^2))/(2-12*x+22*x^2-14*x^3). - Michael D. Weiner, Feb 07 2020
EXAMPLE
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 418*x^7 + 1352*x^8 + ...
MAPLE
m:=30; S:=series((2-10*x+13*x^2-5*x^3+x^2*sqrt(1-2*x-3*x^2))/(2-12*x+22*x^2 -14*x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 14 2020
MATHEMATICA
a[0] = 1; a[n_]:= Module[{M}, M = Table[If[j<i || i==j && i<=4 || j==i+1, 1, 0], {i, 1, n}, {j, 1, n}]; MatrixPower[M, n][[1, 1]]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Aug 16 2018, after A054391 *)
a[n_]:= a[n]= If[n<2, 1, If[n==2, 2, If[3<=n<=4, 9*n-22, ((8*n-19)*a[n-1] - (20*n-49)*a[n-2] +(11*n-1)*a[n-3] +(19*n-116)*a[n-4] -21*(n-5)*a[n-5])/(n-2) ]]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Feb 14 2020 *)
PROG
(PARI) {a(n) = if( n<1, n==0, polcoeff( subst( x * (1 - x) / (1 - 2*x + x^2 - x^3), x, serreverse( x / (1 + x + x^2) + x * O(x^n))), n))}; /* Michael Somos, Aug 06 2014 */
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (2 -10*x +13*x^2 -5*x^3 +x^2*sqrt(1-2*x-3*x^2))/(2-12*x+22*x^2-14*x^3) )); // G. C. Greubel, Feb 14 2020
(Sage)
def A054392_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (2-10*x+13*x^2-5*x^3+x^2*sqrt(1-2*x-3*x^2))/(2-12*x+22*x^2-14*x^3) ).list()
A054392_list(30) # G. C. Greubel, Feb 14 2020
CROSSREFS
Interpolates between Motzkin numbers (A001006) and Catalan numbers (A000108).
Sequence in context: A290134 A080937 A196417 * A261588 A006930 A036767
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Elisa Pergola (elisa(AT)dsi.unifi.it), May 21 2000
STATUS
approved