login
A053731
a(n) = ceiling(binomial(n,8)/n).
4
0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 15, 42, 99, 215, 429, 805, 1430, 2431, 3978, 6299, 9690, 14535, 21318, 30645, 43263, 60088, 82225, 111004, 148005, 195098, 254475, 328697, 420732, 534006, 672452, 840565, 1043460, 1286934, 1577532, 1922618
OFFSET
1,10
LINKS
R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-7,21,-35,35,-21,7,-1).
MAPLE
seq(ceil(binomial(n, 8)/n), n=1..45); # G. C. Greubel, Sep 06 2019
MATHEMATICA
Table[Ceiling[Binomial[n, 8]/n], {n, 45}] (* G. C. Greubel, Sep 06 2019 *)
PROG
(PARI) vector(45, n, ceil(binomial(n, 8)/n)) \\ G. C. Greubel, Sep 06 2019
(Magma) [Ceiling(Binomial(n, 8)/n): n in [1..45]]; // G. C. Greubel, Sep 06 2019
(Sage) [ceil(binomial(n, 8)/n) for n in (1..45)] # G. C. Greubel, Sep 06 2019
CROSSREFS
Cf. Sequences of the form ceiling(binomial(n,k)/n): A000012 (k=1), A004526 (k=2), A007997 (k=3), A008646 (k=5), A032192 (k=7), A053618 (k=4), A053643 (k=6), this sequence (k=8), A053733 (k=9).
Sequence in context: A288414 A102620 A211380 * A381350 A111295 A200760
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Mar 25 2000
STATUS
approved