Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 Jan 01 2024 08:31:40
%S 1,0,1,4,23,166,1437,14512,167491,2174746,31374953,497909380,
%T 8619976719,161667969646,3265326093109,70663046421208,
%U 1631123626335707,40004637435452866,1038860856732399105,28476428717448349996,821656049857815980455
%N Expansion of e.g.f.: (1-x)/(2-exp(x)).
%C The number of connected labeled threshold graphs on n vertices. - _Sam Spiro_, Sep 22 2019
%C Also the number of 2-interval parking functions of size n. - _Sam Spiro_, Sep 24 2019
%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.4(a).
%H T. D. Noe, <a href="/A053525/b053525.txt">Table of n, a(n) for n = 0..100</a>
%H Jean-Christophe Aval, Adrien Boussicault, Philippe Nadeau, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i4p34">Tree-like Tableaux</a>, Electronic Journal of Combinatorics, 20(4), 2013, #P34.
%H Venkatesan Guruswami, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00022-9">Enumerative aspects of certain subclasses of perfect graphs</a>, Discrete Math. 205 (1999), 97-117. See Th. 6.3.
%H Sam Spiro, <a href="https://arxiv.org/abs/1909.06518">Counting Threshold Graphs with Eulerian Numbers</a>, arXiv:1909.06518 [math.CO], 2019.
%H Sam Spiro, <a href="https://arxiv.org/abs/1909.10109">Subset Parking Functions</a>, arXiv:1909.10109 [math.CO], 2019.
%F a(n) = c(n) - n*c(n-1) where c() = A000670.
%F a(n) ~ n!/2 * (1-log(2))/(log(2))^(n+1). - _Vaclav Kotesovec_, Dec 08 2012
%F Binomial transform is A005840. - _Michael Somos_, Aug 01 2016
%F a(n) = Sum_{k=0..n-1} binomial(n, k) * a(k), n>1. - _Michael Somos_, Aug 01 2016
%F a(n) = A005840(n) / 2, n>1. - _Michael Somos_, Aug 01 2016
%F E.g.f. A(x) satisfies (1 - x) * A'(x) = A(x) * (x - 2 + 2*A(x)). - _Michael Somos_, Aug 01 2016
%F a(n) = Sum_{k=1..n-1} (n-k)*A008292(n-1,k-1)*2^(k-1), valid for n>=2. - _Sam Spiro_, Sep 22 2019
%e G.f. = 1 + x^2 + 4*x^3 + 23*x^4 + 166*x^5 + 1437*x^6 + 14512*x^7 + ...
%p A053525 := proc(n) option remember;
%p `if`(n < 2, 1 - n, add(binomial(n, k) * A053525(k), k = 0..n-1)) end:
%p seq(A053525(n), n = 0..20); # _Peter Luschny_, Oct 24 2021
%t With[{nn=20},CoefficientList[Series[(1-x)/(2-Exp[x]),{x,0,nn}], x] Range[0,nn]!] _Harvey P. Dale_, May 17 2012
%o (PARI) {a(n) = if( n<0, 0, n! * polcoeff( (1 - x) / (2 - exp(x + x*O(x^n))), n))}; /* _Michael Somos_, Aug 01 2016 */
%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)/(2-Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Mar 15 2019
%o (Sage) m = 25; T = taylor((1-x)/(2-exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, Mar 15 2019
%Y Cf. A000670, A005840, A052882.
%K nonn,nice,easy
%O 0,4
%A _N. J. A. Sloane_, Jan 15 2000