OFFSET
1,2
COMMENTS
For n^k, n^k - EulerPhi(n^k) = n^(k-1)*(n-EulerPhi(n)), or cototient(n^k) = n^(k-1)*cototient(n). A similar relation holds for Euler totient function.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = n^2*Cototient(n) = A051953(n^3) = n^3 - EulerPhi(n^3) = Cototient(n^3).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Dec 15 2023
MATHEMATICA
Table[(n^3 - EulerPhi[n^3]), {n, 1, 50}] (* Vincenzo Librandi, Jul 27 2013 *)
PROG
(PARI) a(n) = n^3 - eulerphi(n^3) \\ Michel Marcus, Jul 26 2013
(Magma) [n^3-EulerPhi(n^3): n in [1..44]]; // Vincenzo Librandi, Jul 28 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Mar 02 2000
STATUS
approved