login
A052844
E.g.f.: exp(x*(2-x)/(1-x)).
3
1, 2, 6, 26, 148, 1032, 8464, 79592, 842832, 9914336, 128162464, 1804852128, 27489582784, 450089665664, 7880963503872, 146913179393408, 2904309329449216, 60677563647195648, 1335634021282590208, 30891084696208976384, 748854186528315687936
OFFSET
0,2
COMMENTS
An unspecified number of sign-in sheets are available at a meeting of n people. The attendees sign in on one of the sheets in the order that they arrive at the meeting. But some, none, or all of the attendees forget to sign in. a(n) is the number of ways this can happen.
Previous name was: A simple grammar.
FORMULA
E.g.f.: exp(x*(-2+x)/(-1+x)).
Recurrence: {a(0)=1, a(1)=2, a(2)=6, (-2-n^2-3*n)*a(n)+(n^2+5*n+6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)}.
a(n) = n!*sum(m=1,n, ((sum(j=0,m, binomial(m,j)*binomial(n-j-1,m-j-1))))/m!)+1; [Vladimir Kruchinin, May 02 2012]
E.g.f. = exp(x)*exp(x/(1-x)) so a(n) = Sum_{k = 0..n} binomial(n,k)*A000262(k). - Peter Bala May 14 2012
a(n) ~ exp(2*sqrt(n)-n+1/2)*n^(n-1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * k! * a(n-k). - Ilya Gutkovskiy, Aug 13 2021
MAPLE
spec := [S, {B=Sequence(Z, 1 <= card), C=Union(Z, B), S=Set(C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[Exp[x/(1 - x)] Exp[x], {x, 0, 20}], x]*
Table[n!, {n, 0, 20}]
PROG
(Maxima) a(n):=n!*sum(((sum(binomial(m, j)*binomial(n-j-1, m-j-1), j, 0, m)))/m!, m, 1, n)+1; /* Vladimir Kruchinin, May 02 2012 */
CROSSREFS
Row sums of A129652.
Cf. A000262.
Sequence in context: A132609 A168450 A125224 * A375629 A247224 A052859
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f. from Ilya Gutkovskiy, Aug 13 2021
STATUS
approved