login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A simple grammar: sequences of rooted cycles.
31

%I #48 Dec 04 2023 06:36:46

%S 1,0,2,3,32,150,1524,12600,147328,1705536,23681520,345605040,

%T 5654922624,98624766240,1870594556544,37794037488480,817362198512640,

%U 18742996919324160,455648694329309184,11683777530785978880,315505598702787118080,8943481464393674096640

%N A simple grammar: sequences of rooted cycles.

%C Asymptotic behavior (formula 3.2.) in the INRIA reference is wrong! - _Vaclav Kotesovec_, Jun 03 2019

%H Seiichi Manyama, <a href="/A052830/b052830.txt">Table of n, a(n) for n = 0..428</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=795">Encyclopedia of Combinatorial Structures 795</a>

%F E.g.f.: 1/(1-x*log(1/(1-x))).

%F a(n) = (-1)^n*n!*Sum_{k=0..floor(n/2)} k!*Stirling1(n-k,k)/(n-k)!. - _Vladimir Kruchinin_, Nov 16 2011

%F a(n) ~ n! * r^(n+1)/(r+1/(r-1)), where r = 1.349976485401125... is the root of the equation (r-1)*exp(r) = r. - _Vaclav Kotesovec_, Sep 30 2013

%F a(0) = 1; a(n) = n! * Sum_{k=2..n} 1/(k-1) * a(n-k)/(n-k)!. - _Seiichi Manyama_, May 04 2022

%p spec := [S,{B=Prod(C,Z),C=Cycle(Z),S=Sequence(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);

%t CoefficientList[Series[1/(1+x*Log[1-x]), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Sep 30 2013 *)

%o (Maxima) a(n):=(-1)^(n)*n!*sum((k!*stirling1(n-k,k))/(n-k)!,k,0,n/2); /* _Vladimir Kruchinin_, Nov 16 2011 */

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 1/(j-1)*v[i-j+1]/(i-j)!)); v; \\ _Seiichi Manyama_, May 04 2022

%o (PARI) a(n) = n!*sum(k=0, n\2, k!*abs(stirling(n-k, k, 1))/(n-k)!); \\ _Seiichi Manyama_, May 04 2022

%Y Cf. A353880, A353881, A353882.

%Y Cf. A052848, A066166.

%K nonn,easy

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _Alois P. Heinz_, Mar 16 2016