login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A simple grammar.
1

%I #22 Jun 28 2021 15:59:46

%S 0,1,2,4,10,25,69,197,583,1762,5441,17042,54072,173334,560659,1827306,

%T 5995570,19787135,65643226,218777532,732181107,2459576149,8290442750,

%U 28031056619,95045477945,323112137130,1101073839413,3760472582922,12869488098939,44127605854574

%N A simple grammar.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=794">Encyclopedia of Combinatorial Structures 794</a>

%F G.f.: (x/(1-x))*Product_{k>=1} (1+x^k)^a(k). - _Vladeta Jovovic_, Jul 22 2004

%F G.f. A(x) satisfies: A(x) = (x/(1 - x)) * exp(Sum_{k>=1} (-1)^(k+1) * A(x^k) / k). - _Ilya Gutkovskiy_, Jun 28 2021

%p spec := [S,{B=Sequence(Z,1 <= card),C=PowerSet(S),S=Prod(C,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

%Y Cf. A052870 (first differences).

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _Alois P. Heinz_, Mar 16 2016