Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Oct 19 2022 15:34:53
%S 0,1,4,36,432,6480,116640,2449440,58786560,1587237120,47617113600,
%T 1571364748800,56569130956800,2206196107315200,92660236507238400,
%U 4169710642825728000,200146110855634944000,10207451653637382144000
%N Expansion of e.g.f. x*(1-x)/(1-3*x).
%H G. C. Greubel, <a href="/A052700/b052700.txt">Table of n, a(n) for n = 0..375</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=650">Encyclopedia of Combinatorial Structures 650</a>
%F E.g.f.: x*(1-x)/(1-3*x)
%F D-finite recurrence: a(1)=1, a(0)=0, a(2)=4, a(n) = 3*n*a(n-1).
%F a(n) = 2*3^(n-2)*n! = 2*A153647(n-2), n>1.
%p spec := [S,{S=Prod(Z,Sequence(Prod(Sequence(Z),Union(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t Table[2*3^(n-2)*n! -2*Boole[n==0]/9 + Boole[n==1]/3, {n,0,30}] (* _G. C. Greubel_, May 31 2022 *)
%t With[{nn=30},CoefficientList[Series[x (1-x)/(1-3x),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Oct 19 2022 *)
%o (SageMath) [0,1]+[2*3^(n-2)*factorial(n) for n in (2..30)] # _G. C. Greubel_, May 31 2022
%Y Cf. A153647.
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000