OFFSET
0,2
COMMENTS
A153894 is a better version of this sequence. - N. J. A. Sloane, Feb 07 2009
Equals binomial transform of [1, 3, 2, 3, 2, 3, 2, ...]. - Gary W. Adamson, May 11 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 486
Index entries for linear recurrences with constant coefficients, signature (3,-2).
FORMULA
G.f.: (1 + x - x^2)/((1-2*x)*(1-x)).
a(n) = 2*a(n-1) + 1, for n>1, with a(0)=1 and a(1)=4.
E.g.f.: (5*exp(2*x) - 2*exp(x) - 1)/2. - G. C. Greubel, May 07 2019
MAPLE
spec := [S, {S=Prod(Sequence(Union(Z, Z)), Union(Z, Sequence(Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
{1}~Join~Array[5*2^(# -1)-1 &, 30] (* Michael De Vlieger, Jul 18 2018 *)
LinearRecurrence[{3, -2}, {1, 4, 9}, 30] (* G. C. Greubel, May 07 2019 *)
PROG
(PARI) vector(30, n, n--; if(n==0, 1, 5*2^(n-1) -1)) \\ G. C. Greubel, May 07 2019
(Magma) [n eq 0 select 1 else 5*2^(n-1) -1: n in [0..30]]; // G. C. Greubel, May 07 2019
(Sage) [1]+[5*2^(n-1) -1 for n in (1..30)] # G. C. Greubel, May 07 2019
(GAP) Concatenation([1], List([1..30], n-> 5*2^(n-1) -1)) # G. C. Greubel, May 07 2019
(Python)
a052549 = [1] + [(5<<(n-1))-1 for n in range(1, 30)]
print(a052549) # Gennady Eremin, Sep 10 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved