login
A052395
Number of unlabeled asymmetric 4-ary cacti having n polygons.
4
1, 1, 0, 6, 28, 193, 1140, 7688, 52364, 373560, 2732836, 20506254, 156899748, 1221179922, 9642327324, 77092881840, 623120435820, 5085013101160, 41850590485164, 347060754685884, 2897800074184240, 24344668688255109, 205667186830447412, 1746375819789491992
OFFSET
0,4
LINKS
Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, Enumeration of m-ary cacti, Advances in Applied Mathematics, 24 (2000), 22-56.
FORMULA
a(n) = (1/n)*(Sum_{d|n} mu(n/d)*binomial(4*d, d)) - 3*binomial(4*n, n)/(3*n+1) for n > 0. - Andrew Howroyd, Apr 30 2018
MATHEMATICA
a[0] = 1;
a[n_] := DivisorSum[n, MoebiusMu[n/#] Binomial[4#, #]&]/n - 3 Binomial[4n, n]/(3n + 1);
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 29 2018, after Andrew Howroyd *)
PROG
(PARI) a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(4*d, d))/n - 3*binomial(4*n, n)/(3*n+1)) \\ Andrew Howroyd, Apr 30 2018
CROSSREFS
Column k=4 of A303913.
Sequence in context: A338810 A345002 A169723 * A034660 A347770 A206708
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, May 02 2018
STATUS
approved