login
A052344
Number of ways to write n as the unordered sum of two nonzero triangular numbers.
11
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1
OFFSET
0,17
COMMENTS
Number of ways to write 8*n+2 as the unordered sum of two odd squares > 1. - Robert Israel, Feb 24 2016
Number of partitions of 2n into two promic numbers > 1. - Wesley Ivan Hurt, Jun 09 2021
FORMULA
G.f.: (Theta_2(sqrt(x))^2 - 4*x^(1/8)*Theta_2(sqrt(x)) + 2*Theta_2(x))/(8*x^(1/4)) where Theta_2 is a Jacobi theta function. - Robert Israel, Feb 24 2016
a(n) = Sum_{k=1..n} c(k) * c(2*n-k), where c(n) is the characteristic function of promic numbers (A005369). - Wesley Ivan Hurt, Jun 09 2021
a(n) = Sum_{k=1..floor(n/2)} c(k) * c(n-k), where c = A010054. - Wesley Ivan Hurt, Jan 06 2024
MAPLE
G:= (1/8)*(JacobiTheta2(0, sqrt(q))^2-4*JacobiTheta2(0, sqrt(q))*q^(1/8)+2*JacobiTheta2(0, q))/q^(1/4):
S:= series(G, q, 1001):
seq(coeff(S, q, j), j=0..1000); # Robert Israel, Feb 24 2016
MATHEMATICA
nn=150; tri=Accumulate[Range[nn]]; t=Table[0, {tri[[-1]]}]; Do[n=tri[[i]]+tri[[j]]; If[n <= tri[[-1]], t[[n]]++], {i, nn}, {j, i}]; t=Prepend[t, 0]
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 23 2000
STATUS
approved