login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052227
a(n) = (4*n+1)*binomial(3*n,n)/(2*n+1).
4
1, 5, 27, 156, 935, 5733, 35700, 224808, 1427679, 9126975, 58659315, 378658800, 2453288292, 15944020316, 103897691640, 678610095504, 4441369072335, 29120107628115, 191233066114545, 1257635016353100
OFFSET
0,2
COMMENTS
T(2n,n) for A111125. - Paul Barry, Apr 19 2007
a(n) = A182584(2*n+1). - Reinhard Zumkeller, May 06 2012
LINKS
FORMULA
G.f.: 4*x*F(4/3,5/3;5/2;27*x/4) + 2*sin(1/3*arcsin((3*sqrt(3*x))/2))/sqrt(3*x), where F(a;b;z) is a hypergeometric series. - Emanuele Munarini, Jun 06 2011
G.f.: (g+1)/((3*g-1)*(g-1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
Conjecture: 8*n*(2*n+1)*a(n) +6*(-8*n^2-25*n+13)*a(n-1) -45*(3*n-4)*(3*n-5)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
a(n) = binomial(3*n+1, n) + binomial(3*n, n-1) for n>=0. - Paul D. Hanna, Jul 22 2013
G.f.: G(x)*(2*G(x) - 1) / (3 - 2*G(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. - Paul D. Hanna, Jul 22 2013
a(n) is the coefficient of [x^n] in (1+x)/(1-x)^(2n+2) and forms the main diagonal in the following table of coefficients:
(1+x)/(1-x)^2: [1, 3, 5, 7, 9, 11, 13, 15, 17, ...];
(1+x)/(1-x)^4: [1, 5, 14, 30, 55, 91, 140, 204, 285, ...];
(1+x)/(1-x)^6: [1, 7, 27, 77, 182, 378, 714, 1254, ...];
(1+x)/(1-x)^8: [1, 9, 44, 156, 450, 1122, 2508, 5148, ...];
(1+x)/(1-x)^10:[1, 11, 65, 275, 935, 2717, 7007, 16445, ...];
(1+x)/(1-x)^12:[1, 13, 90, 442, 1729, 5733, 16744, 44200, ...];
(1+x)/(1-x)^14:[1, 15, 119, 665, 2940, 10948, 35700, 104652, ...];
(1+x)/(1-x)^16:[1, 17, 152, 952, 4692, 19380, 69768, 224808, ...]; ... - Paul D. Hanna, Jul 22 2013
MATHEMATICA
Table[(4n + 1)Binomial[3n, n]/(2n + 1), {n, 0, 30}] (* Harvey P. Dale, Jan 31 2011 *)
PROG
(Maxima) makelist(binomial(3*n, n)*(4*n+1)/(2*n+1), n, 0, 100); /* Emanuele Munarini, Jun 06 2011 */
(Magma) [(4*n+1)*Binomial(3*n, n)/(2*n+1) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
(Haskell)
a052227 n = (a016813 n) * (a005809 n) `div` (a005408 n)
-- Reinhard Zumkeller, May 06 2012
(PARI) {a(n)=binomial(3*n+1, n)+binomial(3*n, n-1)} /* Paul D. Hanna, Jul 22 2013 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 29 2000
EXTENSIONS
More terms from Harvey P. Dale, Jan 31 2011
STATUS
approved