login
A051666
Rows of triangle formed using Pascal's rule except begin and end n-th row with n^2.
6
0, 1, 1, 4, 2, 4, 9, 6, 6, 9, 16, 15, 12, 15, 16, 25, 31, 27, 27, 31, 25, 36, 56, 58, 54, 58, 56, 36, 49, 92, 114, 112, 112, 114, 92, 49, 64, 141, 206, 226, 224, 226, 206, 141, 64, 81, 205, 347, 432, 450, 450, 432, 347, 205, 81, 100, 286, 552, 779, 882, 900, 882, 779
OFFSET
0,4
COMMENTS
Row sums give 6*2^n - 4*n - 6 (A051667).
Central terms: T(2*n,n) = 2 * A220101(n). - Reinhard Zumkeller, Aug 05 2013
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
LINKS
EXAMPLE
Triangle begins:
0;
1, 1;
4, 2, 4;
9, 6, 6, 9;
16, 15, 12, 15, 16;
...
MATHEMATICA
T[n_, 0] := n^2; T[n_, n_] := n^2;
T[n_, k_] := T[n, k] = T[n-1, k-1] + T[n-1, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 13 2018 *)
PROG
(Haskell)
a051666 n k = a051666_tabl !! n !! k
a051666_row n = a051666_tabl !! n
a051666_tabl = map fst $ iterate
(\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws))
([0], [1, 3 ..])
-- Reinhard Zumkeller, Aug 05 2013
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
EXTENSIONS
More terms from James A. Sellers
STATUS
approved