login
A051528
Molien series for group G_{1,2} of order 384.
1
1, 0, 0, 0, 4, 2, 3, 2, 11, 7, 11, 9, 25, 18, 27, 23, 48, 38, 54, 47, 83, 69, 94, 84, 133, 114, 150, 136, 200, 176, 225, 206, 287, 257, 321, 297, 397, 360, 441, 411, 532, 488, 588, 551, 695, 643, 764, 720, 889, 828, 972, 920, 1116, 1046, 1215
OFFSET
0,5
LINKS
E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II Codes, Even Unimodular Lattices and Invariant Rings, IEEE Trans. Information Theory, Volume 45, Number 4, 1999, 1194-1205.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,1,-1,-1,1,-2,2,0,0,1,-1).
FORMULA
a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=4, a(5)=2, a(6)=3, a(7)=2, a(8)=11, a(9)=7, a(10)=11, a(11)=9, a(12)=25, a(13)=18, a(14)=27, a(n)=a(n-1)+ 2*a(n-4)- 2*a(n-5)+ a(n-6)- a(n-7)-a(n-8)+a(n-9)-2*a(n-10)+ 2*a(n-11)+ a(n-14)-a(n-15). - Harvey P. Dale, Mar 04 2013
a(n) ~ 1/144*n^3. - Ralf Stephan, May 17 2014
G.f.: (x^12-x^9+2*x^8+2*x^4-x+1) / ((x-1)^4*(x+1)^3*(x^2-x+1)*(x^2+1)^2*(x^2+x+1)). - Colin Barker, Apr 02 2015
MAPLE
(1+x)*(1+x^2)*(1-x+2*x^4+2*x^8-x^9+x^12)/((1-x^4)^3*(1-x^6));
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x^2)*(1-x+2*x^4+2*x^8-x^9+x^12)/((1-x^4)^3*(1-x^6)), {x, 0, 60}], x] (* or *) LinearRecurrence[ {1, 0, 0, 2, -2, 1, -1, -1, 1, -2, 2, 0, 0, 1, -1}, {1, 0, 0, 0, 4, 2, 3, 2, 11, 7, 11, 9, 25, 18, 27}, 60] (* Harvey P. Dale, Mar 04 2013 *)
PROG
(PARI) Vec((x^12-x^9+2*x^8+2*x^4-x+1)/((x-1)^4*(x+1)^3*(x^2-x+1)*(x^2+1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Apr 02 2015
CROSSREFS
Sequence in context: A079636 A308261 A019614 * A073244 A106644 A345996
KEYWORD
nonn,easy,nice
STATUS
approved