login
A051229
Numbers m such that the Bernoulli number B_{2*m} has denominator 66.
36
5, 25, 85, 185, 235, 295, 305, 335, 355, 365, 395, 425, 505, 535, 635, 685, 695, 745, 815, 835, 925, 985, 995, 1115, 1135, 1145, 1285, 1315, 1345, 1385, 1415, 1445, 1475, 1525, 1535, 1555, 1565, 1585, 1655, 1675, 1735, 1765
OFFSET
1,1
COMMENTS
From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
FORMULA
a(n) = 5*A119456(n). - G. C. Greubel, Jun 06 2020
EXAMPLE
The numbers m = 5, 25 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - Petros Hadjicostas, Jun 06 2020
MATHEMATICA
Select[Range[2000], Denominator[BernoulliB[2 #]]==66&] (* Harvey P. Dale, Mar 11 2012 *)
PROG
(PARI) is(n)=denominator(bernfrac(2*n))==66 \\ Charles R Greathouse IV, Feb 06 2017
(Sage) [n for n in (1..2000) if denominator(bernoulli(2*n))==66 ] # G. C. Greubel, Jun 06 2020
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020
STATUS
approved