login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050974
Number of binary arrangements on n X n array without three adjacent 1's in a row or column.
2
1, 2, 16, 265, 16561, 3157010, 1828904402, 3323590649777, 18691199385898465, 325778072452564800064, 17617718915229579206450786, 2954164381835835259001326344913, 1536134628973698280539373190731911729, 2477137610106747308204461168746042225266836, 12387488188151269567355592399321080831513078632498, 192102098800681202990688566451981906679020804069237862571, 9238409697848267958752630399467598421213391733838644131510525089
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
LINKS
Steven R. Finch, Hard Square Entropy Constant [Broken link]
Steven R. Finch, Hard Square Entropy Constant [From the Wayback machine]
Eric Weisstein's World of Mathematics, 01-Matrix.
MATHEMATICA
t[m_] := t[m] = Map[ArrayReshape[#, {m, m}] &, Tuples[{0, 1}, m^2]]; a[m_] := a[m] = Count[Table[AnyTrue[Flatten[{Table[Equal[1, t[m][[n, a, b]], t[m][[n, a, b + 1]], t[m][[n, a, b + 2]]], {a, 1, m}, {b, 1, m - 2}], Table[Equal[1, t[m][[n, a, b]], t[m][[n, a + 1, b]], t[m][[n, a + 2, b]]], {a, 1, m - 2}, {b, 1, m}]}], TrueQ], {n, 1, 2^(m^2)}], False]; (* Robert P. P. McKone, Jan 04 2022 *)
CROSSREFS
Any connected three 1's gives A067968.
Cf. A006506. Diagonal of A202471.
Sequence in context: A372513 A283685 A197458 * A012188 A217816 A000182
KEYWORD
nonn,hard
EXTENSIONS
More terms from R. H. Hardin, Feb 02 2002
a(0)=1 prepended and a(13)-a(16) from Peter J. Taylor, Sep 26 2024
STATUS
approved