login
A050369
Number of ordered factorizations of n into 2 kinds of 2, 3 kinds of 3, ...
15
1, 2, 3, 8, 5, 18, 7, 32, 18, 30, 11, 96, 13, 42, 45, 128, 17, 144, 19, 160, 63, 66, 23, 480, 50, 78, 108, 224, 29, 390, 31, 512, 99, 102, 105, 936, 37, 114, 117, 800, 41, 546, 43, 352, 360, 138, 47, 2304, 98, 400, 153, 416, 53, 1080, 165, 1120, 171, 174, 59, 2640
OFFSET
1,2
COMMENTS
Dirichlet inverse of (A000027*A153881). - Mats Granvik, Jan 03 2009
LINKS
FORMULA
Dirichlet g.f.: 1/(2-zeta(s-1)).
a(n) = n*Sum_{d divides n, d<n} a(d)/d, n>1, a(1)=1. - Vladeta Jovovic, Feb 09 2002
Sum_{k=1..n} a(k) ~ -n^(1+r) / ((1+r)*Zeta'(r)), where r = A107311 = 1.728647238998183618135103010297... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Feb 02 2019
G.f. A(x) satisfies: A(x) = x + 2*A(x^2) + 3*A(x^3) + 4*A(x^4) + ... - Ilya Gutkovskiy, May 10 2019
For n > 0, a(n) = n * A074206(n). - Vaclav Kotesovec, Mar 18 2021
MATHEMATICA
a[1]=1; a[n_]:=a[n]=n*Sum[If[d==n, 0, a[d]/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 02 2019 *)
CROSSREFS
Cf. A074206.
Sequence in context: A004730 A332460 A168014 * A070935 A095164 A075384
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved