OFFSET
0,1
COMMENTS
The function in Brocard's Conjecture, which states that for n >= 2, a(n) >= 4.
The lines in the graph correspond to prime gaps of 2, 4, 6, ... . - T. D. Noe, Feb 04 2008
Lengths of blocks of consecutive primes in A000430 (union of primes and squares of primes). - Reinhard Zumkeller, Sep 23 2011
In the n-th step of the sieve of Eratosthenes, all multiples of prime(n) are removed. Then a(n) gives the number of new primes obtained after the n-th step. - Jean-Christophe Hervé, Oct 27 2013
More precisely, after the n-th step, one is sure to have eliminated all composites less than prime(n+1)^2, since any composite N has a prime factor <= sqrt(N). It is in exactly this (restricted) sense that a(n) yields the number of "new primes" (additional numbers known to be prime) after the n-th step. But one knows after the n-th step also that all remaining numbers between prime(n+1)^2 and prime(n+1)*(prime(n+1)+2) are prime: By construction they don't have a factor less than prime(n+1) and they don't have a factor prime(n+1) so the least prime factor could be prime(n+2) >= prime(n+1)+2. For example, after eliminating multiples of 3 in the 2nd step, one has (2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 31, 35, ...) and one knows that all remaining numbers strictly in between 5^2=25 and 5*(5+2)=35 are prime, too. - M. F. Hasler, Dec 31 2014
Numerically, the slope of the lowest "ray" m(n) = min {a(k); k>n}, seems to converge to a value somewhere in the range 1.75 < m(n)/n < 1.8; with m(n)/n > 1.7 for n > 900, m(n)/n > 1.75 for n > 2700. - M. F. Hasler, Dec 31 2014
Legendre's conjecture (see A014085) would imply that a(n) >= 2 for all n and that sequences A054272, A250473 and A250474 were thus strictly increasing (see the Wikipedia article about Brocard's conjecture). - Antti Karttunen, Jan 01 2015
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
A. G. Shannon and J. V. Leyendekkers, On Legendre's Conjecture, Notes on Number Theory and Discrete Mathematics, Vol. 23, No. 2 (2017): 117-125.
Nicolas Vaillant, Graph of A050216(n) / (n * A001223(n))
Nicolas Vaillant, Average density of primes between prime(n)^2 and prime(n+1)^2
Eric Weisstein's World of Mathematics, Brocard's Conjecture
Wikipedia, Brocard's Conjecture
FORMULA
Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = 1. - Alain Rocchelli, Sep 30 2023
EXAMPLE
There are 2 primes less than 2^2, there are 2 primes between 2^2 and 3^2, 5 primes between 3^2 and 5^2, etc. [corrected by Jonathan Sperry, Aug 30 2013]
MATHEMATICA
PrimePi[ Prime[ n+1 ]^2 ]-PrimePi[ Prime[ n ]^2 ]
PROG
(Haskell)
import Data.List (group)
a050216 n = a050216_list !! (n-1)
a050216_list =
map length $ filter (/= [0]) $ group $ map a010051 a000430_list
-- Reinhard Zumkeller, Sep 23 2011
(PARI) a(n)={n||return(2); primepi(prime(n+1)^2)-primepi(prime(n)^2)} \\ M. F. Hasler, Dec 31 2014
CROSSREFS
KEYWORD
nonn,look
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 15 2009
STATUS
approved