login
A050211
Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=3.
3
2, 6, 24, 120, 40, 720, 420, 5040, 3948, 40320, 38304, 2240, 362880, 396576, 50400, 3628800, 4419360, 859320, 39916800, 53048160, 13665960, 246400, 479001600, 684478080, 216339552, 9609600, 6227020800, 9464307840, 3501834336
OFFSET
3,1
COMMENTS
Generalizes Stirling numbers of the first kind
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
LINKS
S. Brassesco, M. A. Méndez, The asymptotic expansion for the factorial and Lagrange inversion formula, arXiv:1002.3894v1 [math.CA], 2010.
G. Nemes, On the Coefficients of the Asymptotic Expansion of n!, J. Int. Seq. 13 (2010), 10.6.6.
Eric Weisstein's World of Mathematics, Permutation Cycle.
FORMULA
From Peter Bala, Sep 06 2011: (Start)
E.g.f.: (1-t)^(-u)*exp(-u*(t+t^2/2)) - 1 = (2*u)*t^3/3!+(6*u)*t^4/4!+(24*u)*t^5/5!+(120*u+40*u^2)*t^6/6!+(720*u+420*u^2)*t^7/7!+....
E.g.f. for column k: 1/k!*(-log(1-x)-x-x^2/2)^k.
Starting at row 3, row lengths are 1, 1, 1, 2, 2, 2, 3, 3, 3, ....
Recurrence: T(n,k) = (n-1)*T(n-1,k) + (n-1)*(n-2)*T(n-3,k-1).
[End]
EXAMPLE
Table begins
.n\k.|......u.....u^2....u^3
= = = = = = = = = = = = = = =
..3..|......2
..4..|......6
..5..|.....24
..6..|....120.....40
..7..|....720....420
..8..|...5040...3948
..9..|..40320..38304....2240
..
MAPLE
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=3..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
seq(T(n), n=3..15); # Alois P. Heinz, Sep 25 2016
MATHEMATICA
t[n_ /; n >= 3, k_ /; k >= 1] := t[n, k] = (n - 1)*t[n - 1, k] + (n - 2)*(n - 1)*t[n - 3, k - 1] ; t[_, _] = 0; t[3, 1] = 2; Flatten[ Table[t[n, k], {n, 3, 15}, {k, 1, Floor[n/3]}]] (* Jean-François Alcover, Nov 05 2012, after Peter Bala *)
CROSSREFS
KEYWORD
nonn,tabf
STATUS
approved