login
A049771
Triangular array T read by rows: T(n,k) = (k^4 mod n) + (n^4 mod k).
2
0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 2, 2, 0, 1, 4, 3, 4, 2, 0, 1, 3, 5, 5, 3, 2, 0, 1, 0, 2, 0, 2, 4, 2, 0, 1, 8, 0, 5, 5, 3, 9, 2, 0, 1, 6, 2, 6, 5, 10, 5, 6, 2, 0, 1, 6, 5, 4, 10, 10, 7, 5, 12, 2, 0, 1, 4, 9, 4, 2, 0, 3, 4, 9, 10, 2, 0, 1, 4, 4, 10
OFFSET
1,5
EXAMPLE
Triangle begins as:
0;
1, 0;
1, 2, 0;
1, 0, 2, 0;
1, 2, 2, 2, 0;
1, 4, 3, 4, 2, 0;
1, 3, 5, 5, 3, 2, 0;
1, 0, 2, 0, 2, 4, 2, 0;
1, 8, 0, 5, 5, 3, 9, 2, 0;
MAPLE
seq(seq( `mod`(k^4, n) + `mod`(n^4, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 16 2019
MATHEMATICA
Table[PowerMod[k, 4, n] + PowerMod[n, 4, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 16 2019 *)
PROG
(PARI) T(n, k) = lift(Mod(k, n)^4) + lift(Mod(n, k)^4);
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 16 2019
(Magma) [[Modexp(k, 4, n) + Modexp(n, 4, k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 16 2019
(Sage) [[power_mod(k, 4, n) + power_mod(n, 4, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 16 2019
(GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(k, 4, n) + PowerMod(n, 4, k) ))); # G. C. Greubel, Dec 16 2019
CROSSREFS
Cf. A049772.
Sequence in context: A365921 A086713 A275730 * A352514 A158944 A156663
KEYWORD
nonn,tabl
STATUS
approved