login
a(n) = Sum_{k = 1..n} T(n,k), where array T is A049767.
4

%I #16 Sep 08 2022 08:44:58

%S 0,1,3,3,13,14,22,22,35,57,57,51,109,114,101,97,178,176,210,190,264,

%T 295,279,224,375,448,428,397,521,499,560,533,719,774,676,641,930,948,

%U 816,783,1083,1147,1229,1156,1227,1304,1319,1093

%N a(n) = Sum_{k = 1..n} T(n,k), where array T is A049767.

%H G. C. Greubel, <a href="/A049768/b049768.txt">Table of n, a(n) for n = 1..1000</a>

%p seq(add((k^2 mod n) + (n^2 mod k), k = 1 .. n), n = 1 .. 50); # _Petros Hadjicostas_, Nov 20 2019

%t Table[Sum[PowerMod[k,2,n] + PowerMod[n,2,k], {k,n}], {n,50}] (* _G. C. Greubel_, Dec 13 2019 *)

%o (PARI) T(n,k) = lift(Mod(k,n)^2) + lift(Mod(n,k)^2);

%o vector(50, n, sum(k=1,n, T(n,k)) ) \\ _G. C. Greubel_, Dec 13 2019

%o (Magma) [&+[Modexp(k,2,n) + Modexp(n,2,k): k in [1..n]]: n in [1..50]]; // _G. C. Greubel_, Dec 13 2019

%o (Sage) [sum(power_mod(k,2,n) + power_mod(n,2,k) for k in (1..n)) for n in (1..50)] # _G. C. Greubel_, Dec 13 2019

%o (GAP) List([1..50], n-> Sum([1..n], k-> PowerMod(k,2,n) + PowerMod(n,2,k)) ); # _G. C. Greubel_, Dec 13 2019

%Y Row sums of A049767.

%K nonn

%O 1,3

%A _Clark Kimberling_