login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049593
Primes p for which residue of ((p-1)! + 1) modulo (p + 16) equals 1.
1
11, 17, 19, 23, 29, 41, 47, 53, 59, 61, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 167, 173, 179, 191, 193, 197, 199, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317, 347, 349, 353, 359, 379, 383, 389, 397
OFFSET
1,1
COMMENTS
Primes p such that p+16 divides (p-1)!. - Robert Israel, Aug 30 2018
LINKS
EXAMPLE
11 is in the sequence because 10! + 1 = 3628801 has the form (11+16)k + 1 = 27k + 1 = 27*134400 + 1.
MAPLE
filter:= proc(p) local L, t, q, s, i, r;
if not isprime(p) then return false fi;
for s in ifactors(p+16)[2] do
t:= 0: q:= s[1];
for i from 1 do
r:= floor((p-1)/q^i);
if r = 0 then return false fi;
t:= t+r;
if t >= s[2] then break fi;
od;
od;
true
end proc:
select(filter, [seq(i, i=3..1000, 2)]); # Robert Israel, Aug 30 2018
MATHEMATICA
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[Divisible[(p - 1)!, p + 16], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jun 09 2020 *)
PROG
(PARI) isok(p) = isprime(p) && (Mod((p-1), (p+16)) == 0); \\ Michel Marcus, Jun 09 2020
CROSSREFS
Sequence in context: A038966 A050778 A316100 * A216664 A019412 A178641
KEYWORD
nonn
AUTHOR
STATUS
approved