login
A049577
Primes p such that x^45 = 2 has a solution mod p.
2
2, 3, 5, 17, 23, 29, 43, 47, 53, 59, 83, 89, 107, 113, 127, 137, 149, 157, 167, 173, 179, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 283, 293, 317, 347, 353, 359, 383, 389, 397, 419, 431, 439, 443, 449, 457, 467, 479, 499, 503, 509, 557, 563, 569, 587, 593, 599, 617, 641, 643, 647
OFFSET
1,1
COMMENTS
Complement of A059637 relative to A000040. - Vincenzo Librandi, Sep 14 2012
MATHEMATICA
ok[p_]:= Reduce[Mod[x^45 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[120]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(600) | exists(t){x : x in ResidueClassRing(p) | x^45 eq 2}]; // Vincenzo Librandi, Sep 14 2012
(PARI)
N=10^4; default(primelimit, N);
ok(p, r, k)={ return ( (p==r) || (Mod(r, p)^((p-1)/gcd(k, p-1))==1) ); }
forprime(p=2, N, if (ok(p, 2, 45), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
Sequence in context: A032733 A111632 A049547 * A353153 A121558 A240679
KEYWORD
nonn,easy
STATUS
approved