login
A049543
Primes p such that x^11 = 2 has a solution mod p.
3
2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
OFFSET
1,1
MATHEMATICA
ok[p_]:= Reduce[Mod[x^11- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
PROG
(PARI)
forprime(p=2, 2000, if([]~!=polrootsmod(x^11+2, p), print1(p, ", "))); print();
/* Joerg Arndt, Jun 24 2012 */
(Magma) [p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^11 eq 2}]; // Vincenzo Librandi, Sep 13 2012
CROSSREFS
Cf. A000040, A059241 (complement: x^11 = 2 has no solutions mod p).
Sequence in context: A008792 A359497 A094746 * A294200 A109997 A174144
KEYWORD
nonn,easy
STATUS
approved