login
A049439
Numbers k such that the number of odd divisors of k is an odd divisor of k.
12
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 128, 144, 225, 256, 288, 441, 450, 512, 576, 625, 882, 900, 1024, 1089, 1152, 1250, 1521, 1764, 1800, 2025, 2048, 2178, 2304, 2500, 2601, 3042, 3249, 3528, 3600, 4050, 4096, 4356, 4608, 4761, 5000, 5202, 5625, 6084
OFFSET
1,2
COMMENTS
Invented by the HR concept formation program.
Sequence consists of all numbers of the form A000079(k)*A036896(m). - Matthew Vandermast, Nov 14 2010
LINKS
Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
FORMULA
a(n) = A000079(k)*A016754(m) for appropriate k, m. - Reinhard Zumkeller, Jun 05 2008
EXAMPLE
There are 3 odd divisors of 18, namely 1,3 and 9 and 3 itself is an odd divisor of 18.
MATHEMATICA
ok[n_] := (d = Length @ Select[Divisors[n], OddQ] ;
IntegerQ[n/d] && OddQ[d]); Select[Range[6100], ok]
(* Jean-François Alcover, Apr 22 2011 *)
odQ[n_]:=Module[{ods=Select[Divisors[n], OddQ]}, MemberQ[ods, Length[ ods]]]; Select[Range[7000], odQ] (* Harvey P. Dale, Dec 18 2011 *)
Select[Range[6000], OddQ[(d = DivisorSigma[0, #/2^IntegerExponent[#, 2]])] && Divisible[#, d] &] (* Amiram Eldar, Jun 12 2022 *)
PROG
(Haskell)
a049439 n = a049439_list !! (n-1)
a049439_list = filter (\x -> ((length $ oddDivs x) `elem` oddDivs x)) [1..]
where oddDivs n = [d | d <- [1, 3..n], mod n d == 0]
-- Reinhard Zumkeller, Aug 17 2011
(PARI) is(n)=my(d=numdiv(n>>valuation(n, 2))); d%2 && n%d==0 \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
Contains A000079 and A036896.
Subsequence of A028982. Includes A120349, A120358, A120359, A120361, A181795. See also A181794.
Sequence in context: A324524 A325621 A025611 * A251642 A079931 A188915
KEYWORD
nice,nonn
AUTHOR
Simon Colton (simonco(AT)cs.york.ac.uk)
EXTENSIONS
Example corrected by Harvey P. Dale, Jul 14 2011
STATUS
approved