%I #17 Jan 08 2015 01:50:13
%S 1,36,750,11880,159027,1899612,20912320,216627840,2141764053,
%T 20415995028,189036065010,1709751003480,15170932662679,
%U 132511015347084,1142399079991620,9741955019900400,82318282158320505,690223721118368580,5749622251945664950
%N Stirling numbers of second kind: 8th column of Stirling2 triangle A008277.
%D See A000771.
%F G.f.: x^8/product_{k=1..8} (1-k*x).
%F E.g.f.: ((exp(x)-1)^8)/8!.
%F a(n) = det(|s(i+8,j+7)|, 1 <= i,j <= n-8), where s(n,k) are Stirling numbers of the first kind. - _Mircea Merca_, Apr 06 2013
%t lst={};Do[f=StirlingS2[n, 8];AppendTo[lst, f], {n, 8, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008 *)
%t CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x)), {x, 0, 25}], x] (* _Vladimir Joseph Stephan Orlovsky_, Jun 20 2011 *)
%Y Cf. A000225, A000392, A000453, A000481, A000770, A000771, A049435. a(n)= A008277(n, 8).
%K easy,nonn
%O 8,2
%A _Wolfdieter Lang_