OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..415
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f. exp(p(x)) with p(x) := (1-(1-x)^5)/(5*(1-x)^5) (E.g.f. first column of A049374).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*(j+4)!/5!*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, j - 1]*(j + 4)!/5!*a[n - j], {j, 1, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 01 2017
STATUS
approved