login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049304
Numbers k such that k is a substring of 6^k.
3
6, 7, 9, 13, 21, 22, 23, 29, 39, 40, 42, 44, 45, 48, 53, 55, 56, 60, 63, 64, 65, 67, 68, 69, 70, 73, 74, 75, 76, 77, 79, 82, 83, 87, 89, 92, 93, 94, 98, 105, 107, 127, 129, 131, 134, 137, 143, 147, 152, 163, 165, 167, 174, 179, 184, 189, 197, 224, 226, 227, 234, 240
OFFSET
1,1
LINKS
EXAMPLE
9 is in the sequence because 6^9 = 10077696 contains 9 as a substring. - David A. Corneth, Aug 13 2021
MATHEMATICA
Select[Range[250], SequenceCount[IntegerDigits[6^#], IntegerDigits[#]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 03 2018 *)
PROG
(Python)
def ok(n): return str(n) in str(6**n)
print(list(filter(ok, range(241)))) # Michael S. Branicky, Aug 13 2021
(PARI) is(n) = { my(digs6n, digsn, streak, i, j); digs6n = digits(6^n); digsn = digits(n); for(i = 1, #digs6n + 1 - #digsn, streak = 0; for(j = 1, #digsn, if(digs6n[i + j - 1] == digsn[j], streak++ , next(2) ) ); if(streak == #digsn, return(1) ) ); 0 } \\ David A. Corneth, Aug 13 2021
CROSSREFS
KEYWORD
nonn,base,easy
STATUS
approved