login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049212
a(n) = -Product_{k=0..n} (10*k - 1); deca-factorial numbers.
9
1, 9, 171, 4959, 193401, 9476649, 559122291, 38579438079, 3047775608241, 271252029133449, 26853950884211451, 2927080646379048159, 348322596919106730921, 44933615002564768288809, 6245772485356502792144451, 930620100318118916029523199, 147968595950580907648694188641
OFFSET
0,2
FORMULA
a(n) = 9*A035278(n) = (10*n-1)(!^10), n >= 1, a(0) = 1.
a(n) = (-1)^n*Sum_{k=0..n} 10^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 10^n * Gamma(n+9/10) / Gamma(9/10). - Vaclav Kotesovec, Jan 28 2015
E.g.f.: (1-10*x)^(-9/10). - Vaclav Kotesovec, Jan 28 2015
From Nikolaos Pantelidis, Jan 17 2021: (Start)
G.f.: 1/G(0) where G(k) = 1 - (20*k+9)*x - 10*(k+1)*(10*k+9)*x^2/G(k+1) (continued fraction).
G.f.: 1/(1-9*x-90*x^2/(1-29*x-380*x^2/(1-49*x-870*x^2/(1-69*x-1560*x^2/(1-89*x-2450*x^2/(1-...)))))) (Jacobi continued fraction).
G.f.: 1/Q(0) where Q(k) = 1 - x*(10*k+9)/(1 - x*(10*k+10)/Q(k+1)) (continued fraction).
G.f.: 1/(1-9*x/(1-10*x/(1-19*x/(1-20*x/(1-29*x/(1-30*x/(1-39*x/(1-40*x/(1-49*x/(1-50*x/(1-...))))))))))) (Stieltjes continued fraction).
(End)
G.f.: Hypergeometric2F0([1, 9/10], --; 10*x). - G. C. Greubel, Feb 03 2022
Sum_{n>=0} 1/a(n) = 1 + (e/10)^(1/10)*(Gamma(9/10) - Gamma(9/10, 1/10)). - Amiram Eldar, Dec 22 2022
MATHEMATICA
CoefficientList[Series[(1-10*x)^(-9/10), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)
PROG
(PARI) a(n) = {-prod(k=0, n, 10*k-1)} \\ Andrew Howroyd, Jan 02 2020
(Magma) [Round(10^n*Gamma(n+9/10)/Gamma(9/10)): n in [0..25]]; // G. C. Greubel, Feb 03 2022
(Sage) [10^n*rising_factorial(9/10, n) for n in (0..25)] # G. C. Greubel, Feb 03 2022
KEYWORD
easy,nonn
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Jan 02 2020
STATUS
approved