OFFSET
0,3
COMMENTS
From Marc LeBrun, Dec 12 2001: (Start)
Define a "numbral arithmetic" by replacing addition with binary bitwise inclusive-OR (so that [3] + [5] = [7] etc.) and multiplication becomes shift-&-OR instead of shift-&-add (so that [3] * [3] = [7] etc.). [d] divides [n] means there exists an [e] with [d] * [e] = [n]. For example the six divisors of [14] are [1], [2], [3], [6], [7] and [14]. Then it appears that this sequence gives the number of proper divisors of [2^n-1]. Conjecture confirmed by Richard C. Schroeppel, Dec 14 2001. (End)
The number of "prime endofunctions" on n points, meaning the cardinality of the subset of the A001372(n) mappings (or mapping patterns) up to isomorphism from n (unlabeled) points to themselves (endofunctions) which are neither the sum of prime endofunctions (i.e., whose disjoint connected components are prime endofunctions) nor the categorical product of prime endofunctions. The n for which a(n) is prime (n such that the number of prime endofunctions on n points is itself prime) are 2, 4, 5, 6, 9, 13, 19, ... - Jonathan Vos Post, Nov 19 2006
For n>=1, compositions p(1)+p(2)+...+p(m)=n such that p(k)<=p(1)+1, see example. - Joerg Arndt, Dec 28 2012
LINKS
D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
A. Frosini and S. Rinaldi, On the Sequence A079500 and Its Combinatorial Interpretations, J. Integer Seq., Vol. 9 (2006), Article 06.3.1.
FORMULA
G.f.: Sum_{k>0} x^k*(1-x^k)/(1-2*x+x^(k+1)). - Vladeta Jovovic, Feb 25 2003
a(m) = Sum_{ n=2..m+1 } Fn(m) where Fn is a Fibonacci n-step number (Fibonacci, tetranacci, etc.) indexed as in A000045, A000073, A000078. - Gerald McGarvey, Sep 25 2004
EXAMPLE
From Joerg Arndt, Dec 28 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)<=p(1)+1:
[ 1] [ 1 1 1 1 1 1 ]
[ 2] [ 1 1 1 1 2 ]
[ 3] [ 1 1 1 2 1 ]
[ 4] [ 1 1 2 1 1 ]
[ 5] [ 1 1 2 2 ]
[ 6] [ 1 2 1 1 1 ]
[ 7] [ 1 2 1 2 ]
[ 8] [ 1 2 2 1 ]
[ 9] [ 2 1 1 1 1 ]
[10] [ 2 1 1 2 ]
[11] [ 2 1 2 1 ]
[12] [ 2 1 3 ]
[13] [ 2 2 1 1 ]
[14] [ 2 2 2 ]
[15] [ 2 3 1 ]
[16] [ 3 1 1 1 ]
[17] [ 3 1 2 ]
[18] [ 3 2 1 ]
[19] [ 3 3 ]
[20] [ 4 1 1 ]
[21] [ 4 2 ]
[22] [ 5 1 ]
[23] [ 6 ]
(End)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
gf = sum(n=0, N, (1-x^n)*x^n/(1-2*x+x^(n+1)) ) + 'c0;
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Apr 14 2013 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved