login
A048648
Order of n-th stable homotopy group of spheres.
5
2, 2, 24, 1, 1, 2, 240, 4, 8, 6, 504, 1, 3, 4, 960, 4, 16, 16, 528, 24, 4, 4, 3144960, 4, 4, 12, 24, 2, 3, 6, 65280, 16, 32, 32, 114912, 6, 12, 120, 1267200, 384, 32, 96, 552, 8, 5760, 48, 12579840, 64, 12, 24, 384, 24, 16, 8, 20880, 2, 8, 4, 687456, 4, 1
OFFSET
1,1
COMMENTS
Proved by Serre to be finite for all positive n.
The best current reference is Isaksen-Wang-Xu, Table 1. - Charles Rezk, Aug 22 2020
REFERENCES
D. B. Fuks, "Spheres, homotopy groups of the", Encyclopaedia of Mathematics, Vol. 8.
S. O. Kochman, Stable homotopy groups of spheres. A computer-assisted approach. Lecture Notes in Mathematics, 1423. Springer-Verlag, Berlin, 1990. 330 pp. ISBN: 3-540-52468-1. [Math. Rev. 91j:55016]
Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, 2003.
Hirosi Toda, Composition Methods in Homotopy Groups of Spheres, Princeton University Press, 1962.
LINKS
Andrey Zabolotskiy, Table of n, a(n) for n = 1..83 (terms 1..81 from Charles Rezk, terms 82..83 using data from Isaksen, Wang & Xu (2023))
Daniel C. Isaksen, Guozhen Wang and Zhouli Xu, Stable homotopy groups of spheres: from dimension 0 to 90, Publications mathématiques de l'IHÉS, 137 (2023), 107-243; arXiv:2001.04511 [math.AT], 2020-2023.
S. O. Kochman and M. E. Mahowald, On the computation of stable stems, The Cech Centennial (Boston, MA, 1993), 299-316, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. [Math. Rev. 96j:55018]
John W. Milnor, Differential Topology Forty-six Years Later, Notices Amer. Math. Soc. 58 (2011), 804-809.
Robert Scharein's program sphere-link.c linked from the Linked Spheres page [has incorrect a(23) and a(29)-a(33)]
FORMULA
a(n) = |Pi_n^S| = |Pi_{k+n}(S^k)| for k > n+1.
EXAMPLE
Pi_1^S = Pi_4(S^3) = Z/2Z, so a(1) = |Z/2Z| = 2.
CROSSREFS
Cf. A001676.
Sequence in context: A014358 A093355 A122962 * A229334 A120065 A250033
KEYWORD
nonn,nice
EXTENSIONS
More terms from Alex Fink (finka(AT)math.ucalgary.ca), Aug 10 2006
a(23) and a(29)-a(33) corrected by Charles Rezk, Aug 22 2020
More terms from Charles Rezk, Aug 25 2020
STATUS
approved