login
A047934
Consider primes p with least positive primitive root g such that q=p+g is next prime after p; sequence gives values of p.
4
2, 3, 5, 11, 29, 59, 101, 107, 149, 151, 179, 197, 227, 251, 269, 271, 337, 347, 367, 419, 461, 659, 733, 821, 827, 971, 991, 1019, 1021, 1061, 1091, 1229, 1277, 1301, 1427, 1451, 1619, 1667, 1787, 1877, 1931, 1949, 1997, 2027, 2141, 2237, 2267, 2309
OFFSET
1,1
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
EXAMPLE
11 has primitive root 2 and 11+2 = 13 is prime after 11, so 11 is in sequence.
MATHEMATICA
ok[p_] := (p + PrimitiveRoot[p] == NextPrime[p]); Select[Prime[Range[343]], ok] (* Jean-François Alcover, May 03 2011 *)
Transpose[Select[Partition[Prime[Range[400]], 2, 1], #[[2]]-#[[1]] == PrimitiveRoot[ #[[1]]]&]][[1]] (* Harvey P. Dale, Oct 08 2012 *)
CROSSREFS
Cf. A047933, A047935. See also A001918.
Sequence in context: A079447 A171832 A084865 * A090235 A265418 A346052
KEYWORD
nice,nonn
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Dec 22 1999
STATUS
approved