login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047504
Numbers that are congruent to {1, 2, 3, 4, 5, 7} mod 8.
5
1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87
OFFSET
1,2
FORMULA
G.f.: x*(1+x^2+x^4+x^5) / ( (x^2-x+1)*(1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.
a(n) = (12*n-9+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9.
a(6k) = 8k-1, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)+1)*Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 28 2021
MAPLE
A047504:=n->(12*n-9+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9: seq(A047504(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{1, 2, 3, 4, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [1, 2, 3, 4, 5, 7]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
Cf. A047451 (complement), A047422, A047519.
Sequence in context: A153350 A191919 A039055 * A359830 A088962 A047363
KEYWORD
nonn,easy
STATUS
approved