login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047450
Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 8.
3
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88
OFFSET
1,3
FORMULA
G.f.: x^2*(1+x+x^2+2*x^3+x^4+2*x^5) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18.
a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = 3*(sqrt(2)-1)*Pi/16 + (8-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 26 2021
MAPLE
A047450:=n->(24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18: seq(A047450(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 5, 6]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
Sequence in context: A184861 A183572 A285962 * A039073 A026359 A367917
KEYWORD
nonn,easy
STATUS
approved