OFFSET
1,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Colin Barker, Mar 13 2012: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x^2*(1 + 3*x + 2*x^2 + x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = (-13 - (-1)^n + (3-i)*(-i)^n + (3+i)*i^n + 14*n)/8 where i=sqrt(-1). - Colin Barker, May 14 2012
E.g.f.: (4 - sin(x) + 3*cos(x) + (7*x - 6)*sinh(x) + 7*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, Jun 01 2016
MAPLE
A047291:=n->(-13-(-1)^n+(3-I)*(-I)^n+(3+I)*I^n+14*n)/8: seq(A047291(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
MATHEMATICA
Select[Range[0, 120], MemberQ[{0, 1, 4, 6}, Mod[#, 7]]&] (* Vincenzo Librandi, Apr 26 2012 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 4, 6, 7}, 100] (* G. C. Greubel, Jun 01 2016 *)
PROG
(Magma) I:=[0, 1, 4, 6, 7]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
(PARI) x='x+O('x^100); concat(0, Vec(x^2*(1+3*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved